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Abstract

In this paper the Visibility Buffer rendering technique is explored and

its memory bandwidth usage is evaluated and compared against the memory

bandwidth usage of Deferred Rendering. The main advantage of the Vis-

ibility Buffer rendering system is in reducing the memory footprint of a

renderer, when compared to the memory footprint of a g-buffer in deferred

shading, by using a smaller buffer and by keeping its elements format small,

without affecting the frame time performance. This advantage in terms of

memory footprint has already been assessed in previous works; however in

these same works the memory bandwidth usage is simply stated as better

than the one of Deferred Rendering but no measurements are provided as to

quantify the claim. Hence we set out to perform measurements which will

provide the data necessary to reason on the memory bandwidth usage of the

Visibility Buffer and its implications compared to the one of Deferred Ren-

dering. Different implementations of the Visibility Buffer are evaluated and

one is selected for implementation, giving specific reasons for this choice.

The same process is performed to choose a Deferred Renderer implementa-

tion. These implementations are then used to collect memory bandwidth per-

formance data using using a specific instrumentation injection library which

adds bandwidth counters to the SPIR-V modules compiled from the GLSL

shaders. The results are presented and discussed in view of the previous

works and of the chosen rendering architecture for both renderers.

Keywords: 3D real-time rendering, Visibility Buffer, rendering techniques

1 INTRODUCTION

Computer graphics is a field which is in constant evolution. New technologies and

techniques are developed every year and there is a constant push for innovation

both in terms of performance and of visual quality.

However, one specific area of improvement being constantly researched is how to

reduce the memory footprint of the rendering framework used by applications so

that more GPU memory is available for other purposes, such as storing textures

or general usage buffers. This is especially relevant when put in the context of the

games industry’s push to achieve real-time 4K high-resolution rendering in com-

puter games. Due to the high pixel density of the images being rendered at such
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resolution, a large amount of the memory available on GPUs is used for storing the

buffer images used by the rendering engine. This leaves less space for the texture

maps used by the 3D models which also need to be of higher resolution to avoid

aliasing with the mentioned higher resolution render targets. More so, with the

advent of Virtual Reality headsets and their high rate of adoption by customers, it

becomes even more important to explore how to reduce the memory footprint of

the available rendering techniques given that to render a 3D VR environment, the

whole scene needs to be rendered twice and the results of the rendering stored in

memory for both the left and right eye, basically doubling the amount of memory

required by the renderer.

A solution to this problem is to simply increase the memory available on the

GPU, which some hardware vendors have started implementing. However this

approach requires the end users to buy a new GPU and reduces the reachable

audience if your game or 3D application requires such hardware. This aspect is

even more evident on consoles, where the available hardware is fixed for a whole

console cycle. Another solution is to develop and assess new software approaches

Figure 1 – Comparison of the deferred rendering pipeline with the Visibility Buffer

pipeline as shown by Burns and Hunt (2013). For this paper a different visibility buf-

fer implementation is used but this diagram gives a good idea of the core differences

between deferred rendering and visibility buffer rendering.

which allow the memory efficiency of 3D renderers to improve with the currently

available hardware without affecting the frame time performance. There has re-

cently been an example of such a technique being brought forward, named in

various ways by different authors but more generally referred to as the visibility

buffer.
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The visibility buffer rendering technique proposes to reduce the number of inter-

mediary image buffers required to render a scene at the expense of more complex

real-time calculations on the GPU, thus reducing the overall memory footprint of

the renderer implementation. See Figure 1.

There have already been some developments on the usage of the technique,

with various works proposing different variations of the same core concept. These

works outline the benefits in terms of memory footprint of the visibility buffer

compared to deferred rendering, and mention that there is also an improvement in

terms of the memory bandwidth used.

However, they do not quantify this gain in memory bandwidth, which makes this

subject a great candidate for an in-depth research on its impact on the perform-

ance of the visibility buffer technique. The visibility buffer technique requires to

read the albedo maps in the second pass, which could potentially result in a higher

memory bandwidth usage than the one for deferred rendering. Hence the ques-

tion which arises is whether the gain in terms of memory footprint presented by

previous works is met by an increase in the memory bandwidth used compared to

deferred rendering. This investigation will set out to understand the implications

in terms of memory bandwidth of the visibility buffer technique.

Therefore the research question for this project is:

How does the visibility buffer technique compare to deferred rendering

in terms of memory bandwidth usage?

The aim is to develop a sample rendering application which implements the visib-

ility buffer technique and a deferred renderer so that these can be used to measure

their memory bandwidth. A support library will be developed to aid in imple-

menting a memory bandwidth usage system in the renderers.

The key objectives are:

• Further research the Visibility Buffer technique and relevant previous work.

• Assess whether additional techniques are required, e.g. shadow mapping,

SSAO. Assess whether additional culling techniques are required, e.g. depth

pre-pass, GPU triangle culling.

• Develop a sample application using a novel graphics API to demonstrate

the techniques.
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• Develop a library which allows to inject custom SPIR-V code in a binary

SPIR-V module compiled from GLSL.

• Retrieve bandwidth performance data from both renderers and present it in

an understandable manner for evaluation. Utilise more than one 3D scene.

• Compare the memory bandwidth usage of the visibility buffer and deferred

renderer techniques utilizing multiple 3D scenes ranging in complexity and

resolution.

2 LITERATURE REVIEW

In the real-time graphics programming field there has always been great effort put

into developing and researching new rendering pipelines and rendering techniques

which would improve the performance of a given real-time application without

excessive compromise in terms of final image quality.

Forward rendering is the standard, out-of-the-box rendering pipeline which is

implemented via hardware by GPUs and exposed to the user via specific APIs (Akenine-

Möller, Haines and Hoffman 2008; Zink, Pettineo and Hoxley 2011). These

pipelines process and compute the shading of screen-space samples in triangle

submission order. This technique however has several limitations. As the tri-

angles are processed and their visibility computed, some fragments could end up

being replaced by another fully-shaded fragment of another primitive which was

submitted later to the pipeline, hence resulting in a phenomenon known as over-

shading (Akenine-Möller, Haines and Hoffman 2008; Schied and Dachsbacher

2015): fragments which will not end up being visible are fully shaded and re-

sources are spent in their processing, even if they will not contribute to the final

image. Another major issue with forward rendering is the small number of lights

which can be considered for lighting if performance is of concern. Because of

overshading, fragments which potentially will not contribute to the final image

will still have the lighting calculations performed, resulting in wasted computa-

tions which, for a large set of lights, would result in a frame render time which is

too large (Zink, Pettineo and Hoxley 2011).

Deferred shading improves over forward rendering by decoupling the lighting

calculations from the geometry and shading computations, which are performed

in two separate passes (Saito and Takahashi 1990). The first pass generates a
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series of buffers storing the surface attributes, and these are then used to perform

the second pass, during which the surface fragments are shaded and illumination

is taken into account. This way only fragments which are visible in the final image

will be shaded. Thanks to this it is possible to have a larger number of lights in a

scene compared to a classic forward renderer, since only visible fragments will be

shaded (Zink, Pettineo and Hoxley 2011) and hence the irradiance is calculated

less times. However, deferred shading presents various drawbacks.

For example, with deferred rendering lighting is still coupled with the shading

of the fragments (Harada, McKee and C.Yang 2012). The light pre-pass renderer

(Engel 2009) decouples these two operations by using a z-prepass which also

outputs additional geometric surface information. It then uses a second pass to

evaluate albedo surface attributes and a final one to compose the data and evaluate

irradiance. The downside of this approach is that it requires submission of the

scene geometry multiple times.

Another issue with deferred rendering has to do with the inability to easily

integrate the use of different BRDFs for different parts of the scene during the

same render pass. This is due to the shading pass being decoupled from the geo-

metry submission and to the use of a single fullscreen pass for its evaluation.

Forward + (Harada, McKee and C.Yang 2012) addresses this issue by combin-

ing forward rendering, for which complete material information is available, with

light culling. It runs a z-prepass which is used to perform a fullscreen second pass

during which the screen space is subdivided into tiles. The lights bounding boxes

are tested against the tiles and assigned to each tile they intersect with. The list

of per-tile lights is then used during the shading. This way the number of lights

needed to evaluate irradiance per-fragment is potentially greatly reduced, making

the technique feasible. However, this technique also requires submission of the

scene multiple times which can present an issue in high-end game productions.

Deferred rendering also presents drawbacks in terms of memory usage, espe-

cially at high resolution render targets with MSAA enabled. With the advent of

VR and 4K resolution TVs, there is now a high demand for being able to render

to high resolution targets without losing performance and memory available for

the high-resolution textures needed for such targets. Deferred rendering scales

poorly as resolution increases, hence novel techniques are required if these higher

frequency targets are to be supported on most recent hardware (Engel 2016).
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Finally, deferred rendering cannot efficiently render transparent geometry due

to the loss of geometry order of submission and of depth information: the informa-

tion about what geometry was behind the topmost fragment is lost. The solution is

to run a forward rendering pass with geometry sorted back-to front (Zink, Pettineo

and Hoxley 2011; Burns and Hunt 2013; Akenine-Möller, Haines and Hoffman

2008)

The Visibility Buffer technique was first introduced by Burns and Hunt (2013).

In their paper they propose to replace the G-buffer with a visibility buffer, which

holds the visibility part of equation (1) (Akenine-Möller, Haines and Hoffman

2008) for every sample in screen-space. The main scope of their work is to present

a novel technique which aims at providing an alternative renderer which uses less

GPU memory when compared to a deferred renderer while still keeping perform-

ance at a satisfactory level.

L0(v) =
∫

Ω

f (l,v)
⊗

Li(l)(n · l)dωi (1)

They use a first rendering pass to store a triangle index and instance ID per

screen-space sample, encoded as an integer of four bytes and subsequently use

this information in a second rendering pass to compute the barycentric coordinates

of the triangles by retrieving the vertices using the triangle index store in the first

pass. Once the barycentric coordinates are available, they are used to interpolate

the vertex attributes to the sample location and perform shading. This allows them

to more clearly separate the visibility determination phase from the shading phase

and has the benefit of reducing the memory footprint of the buffers necessary to

implement this rendering technique compared to a deferred renderer. Burns and

Hunt (2013) compare their implementation using different types of GPUs, varying

between Dedicated and Integrated ones. They show that their implementation

of the visibility buffer technique has a positive impact in terms of cache hits,

especially on SoC GPU architectures. However, the memory bandwidth required

in sampling the albedo maps from the second pass is not taken into account.

Schied and Dachsbacher (2015) expand on the work by Burns and Hunt (2013)

and recognise the advantages of the Visibility Buffer over deferred shading. Their

solution proposes a different structure of the Visibility Buffer than the one by Burns

and Hunt (2013). Their Visibility Buffer uses multiple passes to store the tri-

angle data and their buffer address in two separate memory locations, making
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use of a memoization cache (Liktor and Dachsbacher 2012) to achieve it. Fur-

thermore Schied and Dachsbacher (2015) use the partial derivatives with respect

to screen-space of the barycentric coordinates in x and y to calculate the vertex

attributes at the shading point. They obtain this data using a separate compute

pass. Their results show that they avoid redundant shading by means of the ad-

ditional data they store to identify duplicate visibility samples, which results in

a performance improvement over deferred shading while at the same time redu-

cing the GPU memory usage. In comparison to the work done by Burns and Hunt

(2013), their implementation consumes more memory, but can achieve higher per-

formance improvements (Schied and Dachsbacher 2015). This work, like the one

by Burns and Hunt (2013), does not account for the memory bandwidth required

in sampling the albedo maps from the shading pass.

Engel (2016) merges solutions from both Schied and Dachsbacher (2015) and

Burns and Hunt (2013) to propose an efficient implementation of a renderer based

on the Visibility Buffer technique. In their GDC presentation they show how

they use a single visibility buffer coupled with GPU-side triangle filtering and

culling to achieve optimal rendering performance while also keeping the memory

usage low when compared to deferred shading at a 4K resolution and with MSAA

enabled. The results presented highlight how the visibility buffer does not scale

as fast as the deferred rendering G-buffer does as the resolution and MSSA scale

from 1080p to 4K and from 1 to 4 samples respectively. In order to achieve

a stable frame rate at that resolution, they rely on GPU-side geometry culling

via the GeometryFX library (Chajdas 2016b) and the use of indirect draw calls

exposed by the most recent rendering APIs such as Vulkan (The Khronos Group

2016a). Engel (2016) argues that these results are particularly important because

they show how 4K resolutions and VR can be supported by lower-end hardware.

However, the previous papers on the Visibility Buffer do not precisely measure

and assess the GPU memory bandwidth used by the technique. In these works it is

stated that the Visibility Buffer pipeline reduces the GPU memory used to render

the scene when compared to other rendering pipelines, (Burns and Hunt 2013;

Schied and Dachsbacher 2015; Engel 2016) but the memory read and written to

implement this technique is not accounted for.

Hence, as introduced in Section 1, this paper will assess whether the improve-

ments in terms of the memory footprint of a renderer introduced by the Visibility

Buffer technique also introduce a high memory bandwidth usage which could res-
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ult in a drawback larger than the improvements.

3 METHODOLOGY

3.1 FRAMEWORK

The renderers share common functionalities which are implemented and are avail-

able as a C++ framework. Some of these functionalities include model loading,

shader loading and management, texture loading and management, and more.

3.1.1 RENDERERS

The main focus being on measuring the memory bandwidth of the renderers, these

do not present any advanced rendering technique such as shadow mapping or

SSAO. Implementing techniques which improve the visual quality of the final

render was considered superfluous and would have not changed the outcome of

the memory bandwidth measurements.

Shared functionalities The chosen BRDF is the Phong-Blinn (Blinn 1977) model

with direct lighting from lights modelled as point lights for both renderers.

The framework functionalities used are the same across both renderers, even if

used in different ways to accomplish the required rendering technique. For ex-

ample the deferred renderer defines more render target textures than the visibility

buffer renderer.

Shader compilation from GLSL to SPIR-V format is done on-line using the shaderc

library (Google 2017).

Samples captures, explained in Section 3.1.4, perform both data measurement and

screenshot taking.

The tonemapping operator used for both renderers in their tonemapping pass is

the so-called Reinhard operator (Reinhard et al. 2002). Other operators would be

available, such as, for example, the so-called Filmic operator (Hable 2010).
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Both renderers always read from five different types of albedo maps to per-

form shading, even in the case where for a given material such maps would not

be available. This way the results are consistent and the number of albedo maps

being read does not vary across different sample captures. This is accomplished

by passing a dummy .ktx texture to the shader resources creation where a given

albedo map is missing at the time of model loading. The dummy texture is shared

among all the materials which need one. Therefore certain materials could present

artefacts due to reading a map which was not designed to be used with that ma-

terial, however this does not represent a problem in the context of the objective of

this project.

The early-z functionality is activated to avoid excessive overshading during

the first pass by adding a specific layout specification in the fragment shaders as

shown in Listing 1. It is also activated in the fragment shader of the second pass

...

layout(early_fragment_tests) in;

...

Listing 1 – Activating the early fragment test from a GLSL fragment shader.

and used in combination with the stencil buffer to mask the fragments which have

been shaded during the first pass of both renderers and avoid running the fragment

shaders of the second pass on fragments which are not covered by geometry, i.e.

the parts covered by the skybox. The contents of the stencil buffer in a situation

where some of the fragments have not been shaded during the first pass are shown

in Figure 2.

Finally both scenes have 400 dynamic point lights.

Deferred renderer

G-Buffer The chosen implementation of a deferred renderer makes use of a

G-Buffer with 4 buffers:

• Depth buffer, DEPTH32_STENCIL8
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(a) Stencil buffer. (b) Relative composed image.

Figure 2 – Captures showing the stencil buffer and the relative final, composed

rendered image. The stencil buffer marks the pixels which pass the visibility and cover-

age tests during the first pass of both renderers, so that the sky section of a final image

is not shaded in the second pass.

• Normals buffer, R16G16B16A16_FLOAT

• Diffuse albedo buffer, R8G8B8A8_UNORM

• Specular albedo buffer, R8G8B8A8_UNORM

where the position is reconstructed from the depth buffer using the techniques

explained by Zink, Pettineo and Hoxley (2011) and Pettineo (2009).

Pipeline The pipeline for the deferred renderer consists of 4 subpasses:

• G-Buffer construction

• Lighting and shading

• Tonemapping

• Skybox rendering

which are represented in the application by instantiations of the class Renderpass

which represents a wrapper for the Vulkan definition of a renderpass (The Khronos

Group 2016a). In order to reconstruct position from depth during the lighting and
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shading subpass, a vertex shader is also run which creates a view-space ray from

the camera position to the back of the frustum (Zink, Pettineo and Hoxley 2011;

Pettineo 2009).

Visibility buffer renderer

Buffers The chosen implementation of a visibility buffer renderer makes use

of more than a single buffer as explained by Burns and Hunt (2013), instead doing

something more akin to what introduced by Schied and Dachsbacher (2015).

These buffers are:

• Visibility and barycentric coordinates: R32G32_UINT

• Texture UV derivatives in screen space X and Y R32G32_UINT

• Depth buffer, DEPTH32_STENCIL8

where the position is reconstructed from the depth buffer using the techniques

explained by Zink, Pettineo and Hoxley (2011) and Pettineo (2009).

The visibility and barycentric coordinates buffer encodes the two different in-

formations in its two different channels. The red channel stores the the ID of the

triangle and the drawcall number, encoded into a 32-bit unsigned integer; this ef-

fectively represent the visibility buffer as described by Engel (2016). The green

channel encodes the barycentric coordinates for the triangle to which the fragment

belongs. Barycentric coordinates are part of the graphics processing pipeline and

they are used to interpolate vertex attributes to the fragment location in screen

space. They are defined with respect to the position of the fragment within the

area covered by the triangle to which the fragment belongs and are calculated us-

ing what is commonly referred to as the Edge Function. Barycentric coordinates

allow to define vertex attributes at the vertices of the triangle to which the frag-

ment belongs and then interpolate their values for any fragment which the triangle

covers in screen space (Scratchapixel 2016).

For this application the barycentric coordinates are acquired from the fragment

shader of the first subpass using the AMD GCN Vulkan extensions (Chajdas

2016a). These extensions provide the barycentric coordinates either with correct
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perspective interpolation or without. For this application, the perspective correct

barycentric coordinates are used. The extensions expose only two of the three

barycentric coordinates, since the third one can be calculated via the identity in

equation 2 (Akenine-Möller, Haines and Hoffman 2008).

A workaround was also necessary to obtain the barycentric coordinates at the right

respective vertices; see Listing 6 in Appendix A for the code used in the work-

around.

λ0 +λ1 +λ2 = 1 (2)

Figure 3 shows the barycentric coordinates rendered to a debug output buffer,

before encoding into a UINT32 buffer.

Figure 3 – The raw barycentric coordinates before storage in the buffer. They have

been output to a debug buffer during the first subpass before they are encoded and then

stored in the visibility + barycentric coordinates buffer. These coordinates are provided

by the AMD GCN GLSL extensions.

The barycentric coordinates as provided by the AMD extension are floating

point values. Hence in order to store them into a 32-bit unsigned integer, they

are encoded by the GLSL instruction in Listing 2 which accepts a 2-component

floating point vector and returns a 32-bit unsigned integer. The precision offered

by 16-bit floating point values is enough for the usage of barycentric coordinates

in this application. The same instruction is used to encode each derivative in the

X and Y screen space directions of the UV coordinates into two 32-bit unsigned
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integers. This encoding system allows to achieve an acceptable precision while at

the same keeping the size of the buffers to a relatively small size.

...

packUnorm2x16(vec2 val);

...

Listing 2 – GLSL instruction for packing 2 16-bit floating point values into a 32-bit

unsigned integer.

Pipeline The pipeline for the visibility buffer renderer consists of 4 sub-

passes:

• Visibility pass

• Lighting and shading

• Tonemapping

• Skybox rendering

which are represented in the application by instantiations of the class Renderpass

which represents a wrapper for the Vulkan definition of a renderpass The Khronos

Group (2016a). In order to reconstruct position from depth during the lighting

and shading subpass, a vertex shader is also run which creates a view-space ray

from the camera position to the back of the frustum (Zink, Pettineo and Hoxley

2011; Pettineo 2009), in the same way done for the deferred renderer. The im-

plementation of a visibility buffer renderer by Burns and Hunt (2013) and Engel

(2016) does not make use of the additional barycentric coordinates and derivatives

buffers and calculates them in the second subpass before shading. However, since

the focus of this application is on the memory bandwidth rather than the memory

footprint of the visibility buffer renderer, using additional buffers does not change

the final outcome, as their presence is accounted for.
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3.1.2 SPIR-V INSTRUMENTATION

One of the tools necessary to achieve the objective of being able to measure the

memory bandwidth used by a given rendering technique is SPIR-V shader instru-

mentation. The reason behind this is that the renderer needs to be monitored so

that every memory read or write can be logged using atomic instructions, however

without having to manually modify the GLSL shaders to include atomic incre-

ments or declare the descriptor sets necessary to describe the buffers containing

the logged data.

The final objective is to inject atomic increment instructions which will be

executed by the SPIR-V module at runtime every time a specific instruction we

are interested in counting is also executed. For this project the ones which are

of interest are texture reads and writes. To achieve this, first an instruction is

constructed using the class Instruction provided by the library shaderc (Google

2017). This class represents a SPIR-V instruction and implements an interface

which allows to create an instruction and then retrieve its binary representation.

Knowing what values to pass to construct a correct SPIR-V instruction, in this

case an atomic increment instruction, is not trivial. Some instructions can be in-

jected and work without needing additional instructions executed before them;

however the majority of instructions will need type declarations, constant defini-

tions, and more. This is in fact the case for atomic increment instructions. They

do not need additional type and buffer definitions for themselves, rather descriptor

sets describing the buffer to be incremented by the operation and their respective

necessary definitions.

In order to know what parameters to pass and what instructions to execute to allow

the atomic increment instruction to run, the steps followed are:

• Create a sample, bare bones GLSL fragment shader which executes an

atomic increment.

• Compile it to human-readable SPIR-V using glslangValidator.

• Analyse the output module and recognise what are the required instructions.

Once these have been identified, it is possible to inject the necessary instructions

in the correct order into the original module which needs to have memory band-

width measured using the library described in Section 3.1.3. Appendix B presents
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Listings 7 and 8 which show an example of an instrumented SPIR-V module be-

fore and after it was instrumented as explained above.

The atomic instructions need to be provided with memory on which to oper-

ate. For this reason the injection can not be implemented completely opaquely

with respect to the application as if it did not have instrumentation. The applica-

tion thus defines Vulkan descriptor sets and descriptor layouts which are backed

by host and device readable buffer memory. The descriptor sets created are bound

to specific binding IDs which correspond to the IDs used by the injection instruc-

tions. Descriptor sets and layouts are the way to describe resources, e.g. memory

or sampler resources, to be used by a rendering pipeline in Vulkan (The Khronos

Group 2016b).

The interface of the framework’s Shader class provides the ability to set whether

to enable memory bandwidth measuring for a given GLSL shader described by an

instantiation of that class. If enabled, this will perform the instrumentation injec-

tion as explained in Section 3.1.3.

3.1.3 INSTRUCTION INJECTION LIBRARY

The instrumentation tool is implemented as a C++ library which resides in a separ-

ate code repository from the one developed for the main application. This library

provides two classes named OpcodeStream and OpcodeIterator. OpcodeStream

represents a SPIR-V module which can be manipulated via OpcodeIterators to

insert or remove SPIR-V instructions in the module it represents.

When a new OpcodeStream is instantiated with a SPIR-V module in the form of a

stream of bytes, it parses the module and builds a list of every instruction present

in the module. To achieve this, the SPIR-V specification (Kessenich, Boaz and

Raun 2017) was used to determine the structure of a given SPIR-V instruction

so that an algorithm could be developed. Once the module has been parsed, Op-

codeStream contains a list of the instructions for the module it represents in the

form of an array of offsets measured in bytes between successive instructions. The

class’ interface resembles the one provided by the C++ STL containers, where

the containers can be manipulated via iterators. Hence it is possible to use the

provided iterator class to iterate over every instruction of the module, check its

properties and act in accordance to these, for example by replacing the current in-

struction with another one or by inserting a new instruction before or after. Once
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the stream has been modified, the object of type OpcodeStream can then emit the

new module for usage by an application.

3.1.4 MEMORY BANDWIDTH MEASUREMENT

The bandwidth is measured at the end of each frame, after the whole pipeline

has been executed and the shaders have completed working. At this point of the

pipeline, if memory bandwidth data capture is enabled, the GPU memory buf-

fers contain the measurements of the memory bandwidth used. Reading back this

memory to the host for manipulation is achieved by synchronising the Vulkan

command buffer submission, representing work sent to the GPU for processing,

with the start of the reading phase by means of a Vulkan fence. Vulkan fences

are one of the available synchronisation primitives in the API. They are used as

a coarse way to synchronise work between the GPU and the host (The Khronos

Group 2016b).

Once the fence is signalled, the application can proceed to map the Vulkan buf-

fer using the provided API methods and read the data into the host application

memory for later processing. Moreover, it is necessary to have the ability to

compare the samples with the position in which the camera was at the time of

sampling. Hence the renderers implement a function to take a screenshot of the

first frame during which the bandwidth is read and sampled.

Captured data The memory bandwidth which needs to be measured is in terms

of the memory reads and memory writes. That is, every time a texture is read or

written in a shader, this needs to be logged and the counters incremented.

The counters take the form of one single contiguous Vulkan buffer which is visible

both by the host and the device. This buffer is not shared among the two renderers;

each renderer, which lives in its own application, declares one and manipulates its

own one.

...

texture(...);

atomicAdd(first_pass[0]);

...

Listing 4 – Example GLSL logging of number of memory reads.
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...

layout (std430, set = j, binding = k) buffer AtomicsBuff {

uint first_pass[2]; // Reads 0, Writes 1

uint second_pass[2]; // Reads 0, Writes 1

};

...

Listing 3 – Example GLSL declaration for the buffers to be used to log the memory

read or written by a shader.

In the shaders it is declared as if separated into two arrays, as shown in List-

ing 3. The code in Listing 3 does not represent what is written in the GLSL

shaders; instead it represents the equivalent of what is injected via the instru-

mentation library in form of binary SPIR-V instructions. The same applies for

Listing 4, which shows what the GLSL equivalent of the injected SPIR-V instruc-

tion would be for logging the number of memory reads. The logging of memory

reads would be similar, with the difference being in the index used into the buffer:

1 instead of 0.

Sample capture The sample memory bandwidth data is captured and stored into

a data structure which grows as the number of samples increases. The processing

is done at a later phase, during the application shutdown. Each sample consists

of 20 rendered frames worth of memory bandwidth data: when the user requests

a sample capture, the application will capture the data for 20 frames, then stop

until a new sample is requested. If a shader has been enabled for capturing of

memory bandwidth data as explained in Section 3.1.2, the atomic counters are run

and reset every frame; however they are not read from the host unless a capture

has been requested.

Screenshots When a sample capture is requested, the renderers will also run a

function which takes a screenshot of the currently presented colour buffer. It ac-

counts for gamma correction (Gritz and d’Eon 2008) and outputs the image to a

.ppm file inside a specific folder inside the main build folder. It works by creating

a host-visible Vulkan buffer and copying the color buffer into it, similarly to what

shown by Willems (2016). The function is run after the semaphore synchronisa-

tion explained above, thus avoiding concurrency issues.
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Sample data processing At the time of the application shutdown, both ren-

derers will manipulate the gathered memory bandwidth data for output into CSV

format. First the 20 frames worth of data is averaged to form one sample, per

sample. Once the averaged data, forming samples, is available, the renderers will

perform different manipulation operations depending on the structure of their buf-

fers structure.

Since the data sampled directly from the Vulkan buffers does not represent the

amount of memory in bytes but instead represents the amount of times a texture

read or write has been called, this amount needs to be manipulated to yield the

amount in MiB. This represents a more understandable amount which can be more

easily compared and checked against the results from other papers and against ex-

pected outcomes. To do so, the reads and writes are divided by the number of

buffers which can affect them. As mentioned above, this varies between the two

renderers: the deferred renderer uses more buffers than the visibility renderer. It

also varies because the two renderers sample the albedo maps at different sub-

passes with respect to each other. The single buffers values are then multiplied by

the size in bytes of each buffer which contributed to the accumulation of this data

and finally divided by the value of one MiB to transform the results from bytes to

MiB. Listing 5 shows what this function looks like for the deferred renderer. In

the visibility renderer it is implemented similarly with the differences as explained

previously in this paragraph.

Once the data is available in CSV format it is processed by two different python

scripts which produce bar graphs after further manipulating the data. Figure 4

shows an example of the graphs output by the python scripts.
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...

for (eastl_size_t i = 0; i < mem_perf_data_reads_.size(); ++i) {

average_reads[i] = {0, 0};

average_writes[i] = {0, 0};

// Calculate avg

for (eastl_size_t j = 0; j < kFramesCaptureNum; ++j) {

average_reads[i].first_frame += mem_perf_data_reads_[i][j].first_frame;

average_reads[i].second_frame += mem_perf_data_reads_[i][j].second_frame;

average_writes[i].first_frame += mem_perf_data_writes_[i][j].first_frame;

average_writes[i].second_frame +=

mem_perf_data_writes_[i][j].second_frame;

}

average_reads[i].first_frame /= kFramesCaptureNum;

average_reads[i].second_frame /= kFramesCaptureNum;

average_writes[i].first_frame /= kFramesCaptureNum;

average_writes[i].second_frame /= kFramesCaptureNum;

// Output 1st reads, maps

ofs << ((SCAST_FLOAT(average_reads[i].first_frame) * 4.f) / kMebi) << ";";

// Output 1st write, g Buffer

ofs << ((SCAST_FLOAT(average_writes[i].first_frame) * 16.f) / kMebi) << ";";

// Output 1st write, depth stencil

ofs << ((SCAST_FLOAT(average_writes[i].first_frame) * 5.f) / kMebi) << ";";

float reads_single_map = SCAST_FLOAT(average_reads[i].second_frame / 4U);

// Output 2nd read g buffer

ofs << ((reads_single_map * 16.f) / kMebi) << ";";

// Output 2nd read depth buffer

ofs << ((SCAST_FLOAT(reads_single_map) * 5.f) / kMebi) << ";";

// Output 2nd writes

ofs << ((SCAST_FLOAT(average_writes[i].second_frame) * 8.f) / kMebi)

<< "\n";

}

...

Listing 5 – Output data manipulation for the deferred renderer. First the average over

20 frames is calculated and then these amounts are used to output the per-resource

data, using the sizes of the buffer elements as a multiplier. When outputting the data for

the first subpass writes there is no need to calculate a per-resource amount since the

writes are not written by the counters per-resource but per-fragment shader invocation.

21



3.2 EVALUATION METHODS

This project implemented the visibility buffer version proposed by Burns and

Hunt (2013) with changes allowed by the AMD GCN Vulkan Extensions (Chaj-

das 2016a), which are explained in Section 3.1.1. This implementation assesses

the memory bandwidth usage of a visibility buffer renderer compared to the one

of a deferred renderer. The implementation is in C++ and Vulkan (The Khronos

Group 2016a) and a framework was developed ad hoc for the project for the sake

of code readability and as good industry-standard practice. After having imple-

mented the visibility buffer a deferred shading system was developed with the aim

of using it for comparison with the visibility buffer system, similarly to what is

done by other papers on the visibility buffer (Burns and Hunt 2013; Schied and

Dachsbacher 2015). The renderers use simple and standard rendering techniques

for the lighting and shading. They do not present rendering techniques focussed

on improving their images aspect since the focus of this paper is not on visual

quality. In both renderers, the list of Albedo maps is:

• Diffuse

• Ambient

• Specular

• Roughness

• Normals

The choice of which and how many albedo maps to use was based on the neces-

sity to produce meaningful memory bandwidth data. Hence the approach chosen

was to use as many input albedo maps as possible in both renderers so that the

amount of data would have made clear the advantages and disadvantages of both

techniques.

Both rendering systems are modified to include memory bandwidth counters,

implemented by means of atomic increments on pre-defined memory areas, which

are then read by the application at the end of the rendering frame to produce output

performance data. These bandwidth counters are added by means of injecting
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SPIR-V binary code into a SPIR-V module so that the injection is opaque to a

GLSL shader. These measure the memory read and written in MiB.

The data was captured under different situations to provide for a more precise

result. For each renderer, the same same number of samples in the same situations

were captured. The test cases were:

• Sponza at resolutions of:

– 1280×720 pixels

– 1366×768 pixels

– 1280×1024 pixels

– 1600×900 pixels

– 1920×1080 pixels

• Rungholt at resolutions of:

– 1280×720 pixels

– 1366×768 pixels

– 1280×1024 pixels

– 1600×900 pixels

– 1920×1080 pixels

These resolutions were chosen based on the most popular monitor resolutions (w3school

2017) in order to simulate the conditions in which a potential renderer using the

visibility buffer or deferred rendering technique could run. Moreover having a

breadth of different resolutions allows to determine how the techniques scale as

the resolution increases or decreases.

For each test case above, 10 samples, or captures, were taken. A sample con-

sists of 20 frames worth of memory bandwidth performance data, averaged to

form one capture. This averaging is done at application shutdown as explained in

Section 3.1.4. Sample capturing is triggered by the user, and can be either per-

formed at the current camera location and orientation, or it can be automated to

position and orientate the camera for 10 different locations in succession. In order
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to being able to correctly compare samples between the two rendering architec-

tures, the samples were all taken at the same 10 locations for both renderers using

the automated process described above. This means that for a given sample, e.g.

sample 1, the same location and camera orientation was used when capturing in

both renderers at every resolution. Of the 10 samples mentioned above at least

one was taken in the following conditions:

• Mostly sky

• 50% sky, 50% geometry

• 100% geometry

This allows to determine the difference in memory bandwidth between cases in

which different amounts of geometry are rasterized.

When background sky is present in the final image, that area is not accoun-

ted for in terms of memory bandwidth and it is not shaded in the shading passes

of either renderer. This is achieved through the use of the stencil buffer. Dur-

ing application shutdown the data is formatted and output to file for further ex-

ternal processing. The second data processing stage consists in producing easily-

interpretable bar charts. How this is accomplished is outlined in Section 3.1.4.

After the data was gathered and presented, the two renderers’ results were com-

pared using a quantitative methodology. The results are first presented in Sec-

tion 4.1 and then discussed in Section 5.

The choice of 3D scenes was determined by their availability in the academic

field and by their properties. The Crytek Sponza scene (McGuire 2011) has

262,267 triangles and 184,330 vertices, compared to the Rungholt scene (McGuire

2011) which has 6,704,264 triangles and 12,308,528 vertices. This allows to

gather results in two situations with a large difference in the count of the geo-

metry being processed by the GPU.

The implementation of a visibility buffer renderer relies on AMD-specific ex-

tensions, and hence cannot be run on neither GPU cards by other vendors nor on

pre-GCN (Chajdas 2016a) AMD GPUs.
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4 RESULTS

The various measurements per-resource assume the buffer sizes as explained in

Section 3.1.1.

Hardware The application was developed and run on a machine with the spe-

cifications as shown in Table 1.

Component Type/Amount

CPU Intel Core i7 975 @ 3.33GHz

GPU AMD Radeon RX 480

Memory 12GB DDR3

Motherboard ASUS P6T7 WS SuperComputer

OS Windows 10 64-bit Education

Table 1 – Specifications for the test machine.

4.1 AVERAGED SAMPLES

Total Figure 4 shows the total memory read or written for a given renderer im-

plementation in various test cases. This shows that, on average, the amount of

memory read by the visibility buffer renderer is less than the one read by the de-

ferred renderer by around 30%. The amount of memory written does not differ as

much as the amount of memory read by the two renderers does, with the deferred

renderer using around the same amount of memory bandwidth as the visibility

buffer renderer for writes, on average.

The graphs also show an approximation of the amount of memory bandwidth that

would be used by a visibility buffer renderer implementation with a leaner vis-

ibility buffer. In this case the memory bandwidth used by the visibility buffer

renderer is lower than the one used by the implementation of a visibility buffer

renderer chosen for this paper, resulting in a around 50% less memory bandwidth

also compared to deferred rendering. Furthermore, the memory written is also

less, resulting in less memory around 50% less bandwidth used for writes com-

pared to deferred rendering. Finally the graphs in Figure 4 also show that this
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Figure 4 – Total memory read and written for both renderers. The left hand image

shows the data per-resolution taken in Sponza, whereas the right hand image shows

the data from Rungholt. Notice the presence of the lines named “Visbuff only”; these

represent the amount of data that would be read/written by a visibility buffer imple-

mentation without depth pre-pass as implemented by Burns and Hunt (2013) and Engel

(2016).

outcome remains consistent across various test scenes and final render target res-

olutions, as hypothesised in the previous sections. As the resolution increases,

the results scale proportionally and the two renderers maintain the ratio between

memory bandwidth read by the deferred renderer versus the one read by the vis-

ibility buffer.

Per-resource Figure 5 show the memory read and written in MiB by the vis-

ibility buffer renderer and the deferred renderer for the average of 10 samples

worth of data, per-resource, per-scene and per-resolution (See Section 3.2 for the

explanation about samples and how they were captured).

In terms of the visibiliy buffer renderer the results in Figure 5 outline that in

the first subpass of the visibility buffer no memory is read since only the visibility

of the fragments is computed, and that the memory written consists of 3 buffers

for this implementation. The average memory written per-buffer resource does

not exceed 40MiB in the visibility buffer renderer, and the memory written for

both the visibility + barycentric coordinates buffer and the derivatives buffer is

the same. Figure 5 shows that the second subpass of the visibility buffer renderer

performs most of its reads by reading the albedo maps for all test cases. The
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albedo map reads do not exceed 40MiB.

In terms of deferred rendering the data displayed in Figure 5 shows that during

the first subpass there is a high read rate of albedo maps for all test cases, coupled

with a high write rate due to the writing of the G-buffer. The albedo maps reads

amount to, on average, around 80MiB for the higher-resolution test case, and to

around 45MiB for the lower-resolution test cases, with the writes being at around

the same rate if the G-buffer and the Z-buffer writes are to be combined. During

the second subpass, the deferred renderer performs, on average, most of its reads

by sampling the G-buffer and Z-buffer, with the Z-buffer being part of the G-

buffer in this implementation since it is used for position reconstruction. In any

case, even in the higher-resolution test cases, their combined reads amount to a

maximum of around 40MiB.

When considered together these results show that during the first subpass the

visibility buffer renderer performs very similarly to the deferred renderer in terms

of memory writes and has an improvement of 100% in terms of memory reads due

to its lack of reads during this subpass. If, as explained in the above paragraph

and in Figure 4, a leaner visibility buffer implementation is considered, then the

visibility buffer improves by around 60% on average over deferred rendering in

terms of memory writes.

During the second subpass the visibility buffer performs around the same amount

of reads from the visibility, barycentric coordinates and derivatives buffer as the

deferred renderer does from the G-buffer. However the visibility buffer imple-

mentation performs a large number of reads from the albedo maps during this

subpass. This results in the deferred renderer performing around 50% less reads

on average during this subpass. Again if a leaner visibility buffer implementation

is considered, the number of reads performed by the visibility buffer renderer is

lower and the advantage of the deferred renderer is around 15% instead.

Finally the charts in Figure 5 further show how the memory bandwidth used

by both renderers in both scenes is directly proportional to the final render target

resolution.
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Figure 5 – Average memory read and written per-resource and per-subpass, for both

renderers and for both test scenes. During the first subpass, the visibility buffer renderer

does not perform any reads, hence its bar is missing in the first column of charts from the

left. In every chart, the bars on the left represent data for the visibility buffer, whereas

bars on the right represent data for the deferred renderer. Notice the different scale of

the Y axis depending on the graph.
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4.2 PER-SAMPLE

The graphs in Figures 6 and 7 show the difference in memory read and written, in

MiB, with more granularity, for Rungholt at 1920×1080, Rungholt at 1280×720,

Sponza at 1920×1080 and Sponza at 1280×720. Each value on the X axis corres-

ponds to a sample. These particular resolutions were chosen for analysis because
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Figure 6 – Memory bandwidth usage per-sample (hence per-location and camera ro-

tation) and per-renderer at a resolution of 1280×720. Each entry corresponds to a

sample capture and each sample is taken at a different location within the test scenes.

In every chart, the bars on the left represent data for the first subpass, whereas bars on

the right represent data for the second subpass. Notice the different scale of the Y axis

depending on the graph.

they are at the two ends of the range of resolutions analysed. Since, as stated in the

previous paragraphs, the memory bandwidth is directly proportional to the final

render target resolution, it is possible to analyse these two resolutions and apply

the same deductions to the intermediate resolutions thanks to the results provided

by the averaged results in the previous sections.
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These per-sample results highlight the difference in memory bandwidth between

samples taken at different locations, hence with a varying amount of geometry

within the view frustum. For samples with a high amount of geometry within the

frustum, the results tend to show a high memory bandwidth usage. Captures 0,

1 and 6 for deferred rendering in Sponza in Figure 7 present an example of such

case: there is a high rate of reads, especially during the first subpass, accompanied

by a much lower rate of reads in the second subpass. These samples also show a

high rate of memory writes, coming mainly from the first subpass. However for
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Figure 7 – Memory bandwidth usage per-sample (hence per-location and camera ro-

tation) and per-renderer at a resolution of 1920×1080. Each entry corresponds to a

sample capture and each sample is taken at a different location within the test scenes.

In every chart, the bars on the left represent data for the first subpass, whereas bars on

the right represent data for the second subpass. Notice the different scale of the Y axis

depending on the graph.

the Rungholt scene samples, which present a higher sky to geometry ratio, there

is a larger difference between situations with high overshading and ones which

suffer less overshading.

A similar outcome can be observed in the results for the visibility buffer renderer
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in Figure 7: there is a higher rate of memory writes and writes for samples taken

in situations presenting a high amount of geometry, such as samples 0 and 6 for

Sponza.

Figures 8 and 9 show the same data as Figures 6 and 7 but after it was ma-

nipulated as to highlight the difference in total memory read and written by both

renderers in each sample. These graphs highlight how, on average, the visibility

buffer performs less memory reads and writes than the deferred renderer. How-

ever, in some cases, such as in sample 8 from Rungholt, the two renderers perform

very similarly. Finally there is a larger difference in memory bandwidth used by

the two renderers between samples with high overshading and ones which suffer

less from overshading.

The results also show that this trend for which the rate of memory writes and

reads is tied to the geometry complexity within a given sample’s view frustum

applies also to the remaining scenes and test cases: their interpretation can be

extended to the other scenes and resolution test case combinations.

0 1 2 3 4 5 6 7 8 9

0

20

40

60

80

100

120

M
iB

Sponza

R Visbuff

W Visbuff

R Deferred

W Deferred

0 1 2 3 4 5 6 7 8 9

0

50

100

150

200

Rungholt

R Visbuff

W Visbuff

R Deferred

W Deferred

C
ap

tu
re

s

Figure 8 – Memory bandwidth usage per-sample (hence per-location and camera rota-

tion) and per-scene at a resolution of 1280×720. Each entry corresponds to a sample

capture and each sample is taken at a different location within the test scenes. In each

chart, the bars on the left represent data for the visibility buffer, whereas bars on the

right represent data for the deferred renderer. Notice the different scale of the Y axis

depending on the graph.
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Figure 9 – Memory bandwidth usage per-sample (hence per-location and camera rota-

tion) and per-scene at a resolution of 1920×1080. Each entry corresponds to a sample

capture and each sample is taken at a different location within the test scenes. In each

chart, the bars on the left represent data for the visibility buffer, whereas bars on the

right represent data for the deferred renderer. Notice the different scale of the Y axis

depending on the graph.

5 DISCUSSION

5.1 INTERPRETATION OF RESULTS

5.1.1 AVERAGED SAMPLES

Total The results presented in Section 4.1 show that the visibility buffer renderer

uses around 30% less memory bandwidth than the deferred renderer, on average,

in all of the test cases. In terms of memory reads there is a difference of around

40%, on average, between the two renderers. This can be attributed to mainly two

factors: overshading and how deferred rendering operates.

Deferred rendering performs albedo maps fetches during the first subpass,

which is also the subpass which suffers from overshading. The result is a large

number of texture fetches during the first pass for the deferred renderer. This

phenomenon could be alleviated using a depth prepass (Burns and Hunt 2013),

however since the visibility buffer renderer suffers from the same overshading

phenomenon as the deferred renderers, the outcomes level each other out. In terms

32



of memory writes the results show that the deferred renderer uses around the same

bandwidth as the visibility buffer, on average, in all situations, which is caused by

the same phenomena which causes the deferred renderer to use a larger memory

bandwidth for reading: overshading and the operating structure of the G-buffer.

Since during the first subpass the deferred renderer suffers from overshading it

ends up writing to a given buffer location more than once.

This first set of results hence prove what had been suggested by previous

works: the visibility buffer has a lower memory bandwidth requirement than de-

ferred rendering, although not by a large amount, even with a rather memory

footprint-heavy visibility buffer implementation such as the one chosen for this

paper. However, if the leaner version of a visibility buffer renderer is taken into

consideration and compared to deferred rendering, the result is that the visibility

buffer is a clear winner in terms of memory bandwidth usage, with an improve-

ment of around 50% or more, in total, compared to deferred rendering. This also

confirms the statements made in previous work on the visibility buffer regarding

the improvements in terms of memory bandwidth of the visibility buffer (Schied

and Dachsbacher 2015; Burns and Hunt 2013).

Per-resource As outlined in Section 4.1 all the reads for the visibility buffer are

performed during the second pass of its pipeline. The results in Figure 5 clearly

show how for the visibility buffer, since for it to work it is necessary to read all

the albedo maps during the second pass, the memory bandwidth required for that

operation is on average as much as the one required for reading the G-buffer.

When the need to also read the visibility buffer and other possible buffers, as it

is the case for the visibility buffer implementation chosen in this paper, is taken

into account the graphs show that the visibility buffer performs 50% more reads

than the deferred renderer, on average, during the second subpass. In terms of

memory writes, the renderers perform similarly during the first subpass, which is

to be expected due to their buffer formats and the fact that they both suffer from

overshading.

One of the aims was to understand whether the need of the visibility buffer

rendering to read all the albedo maps during the second subpass would have neg-

atively affected its memory bandwidth performance compared to the one of de-

ferred rendering, where the G-buffer is read instead during the second pass. The

results in Figure 5 highlight how the majority of the reads are performed on the
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albedo maps for both renderers: for the visibility buffer that happens during the

second subpass and for the deferred renderer during the first subpass. However

the deferred renderer performs more albedo map reads than the visibility buffer

on average if both subpasses are considered at the same time, with a difference of

around 50% on average between the two when considering this resource. This is

to be expected for the reasons presented in the above paragraphs: the deferred ren-

derer suffers from overshading during the first pass, during which it performs the

reads, whereas the visibility buffer instead performs albedo maps sampling during

its second pass. Hence the visibility buffer renderer will perform, in the worst case

scenario of a visibility buffer completely covered by geometry, as many reads as

the number of albedo maps times the resolution of the final target, whereas the

deferred renderer could do more due to overshading.

Summarising, though the graphs show how during the second subpass the visib-

ility buffer is affected by the need to read the albedo maps, when the results are

considered across the two subpasses the visibility buffer performs less memory

reads than deferred rendering even with a visibility buffer implementation which

presents a rather memory footprint-large buffer. These results would be in favour

of the visibility buffer even more in the case of a leaner visibility buffer imple-

mentation.

5.1.2 PER-SAMPLE

The outcome outlined in the previous sections is particularly significant if the res-

ults per-sample presented in Section 4.2 are also taken into consideration. These

results show that in some cases the visibility buffer performs similarly to the de-

ferred renderer but never worse, especially in terms of the amount of bandwidth

used for reading textures.

This can be attributed to the lower memory consumption of the visibility buffer

compared to the G-buffer: this buffer in fact stores only the visibility of the frag-

ments, compared to the G-buffer which stores additional surface information, e.g.

the normals, the albedos. Another important factor is, again, overshading, which

is discussed further at the end of this paragraph.

The data charts in Figure 7 show the captured data for Rungholt and Sponza

at a resolution of 1920×1080, where each entry is a different sample, comparing

the memory usage of the first subpass against the one of the second subpass.
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(a) Sample 3 (b) Sample 5

(c) Sample 8

Figure 10 – Screenshots of Rungholt at 1920×1080 relative to samples shown in Fig-

ure 7 and discussed in Section 5.1.2. They present a variety of mostly-geometry and

mostly-sky samples so that the memory bandwidth usage in these two cases can be as-

sessed. Since the 10 captures per resolution are all done at the same camera locations,

these two screenshots are valid for both renderers.

These graphs are useful for noticing how the statements made in the previous sec-

tions regarding how the amount of memory read by the visibility buffer renderer

is related mostly to the coverage of the visibility buffer by geometry, and hence

not related to overshading, are correct. The graphs for Sponza in Figure 7 show

how for most captures the amount of reads by the visibility buffer does not ex-

ceed a certain threshold, which represents the amount of reads for a fully-covered

visibility buffer, i.e. a situation where the geometry fills the whole final render

target, whereas for deferred rendering the amount varies depending on the sample

and hence on the amount of overshading. The same results can be noticed in the

graphs for Rungholt, although there is a larger variance between different samples

due to a higher variance in the sky-to-geometry rate for the Rungholt scene.

Analysing capture 3 for the visibility buffer for Rungholt in Figure 7 for which

the screenshot is shown in Figure 10a is possible to notice how the memory band-
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width consumption is lower compared to sample 5, shown in Figure 10b of the

same scene. This is due to there being more sky in sample 3 than in sample 5

and to the fact that the position of the camera was so that less geometry was in

front of it, resulting in less overshading. This shows that for the visibility buffer

the performance in terms of memory writes scales proportionally to the amount of

coverage by geometry in the final render target. The same applies to the deferred

renderer: comparing sample 3 and 5 shows how this renderer is also affected by

overshading.

Figure 8 presents data which is similar to the one presented in Figure 9, only with

smaller amounts of memory bandwidth usage due to the lower resolution used.

This is in line with the statements in previous sections about how the memory

bandwidth usage is directly proportional to the target resolution.

Comparing sample 8 of the visibility buffer with the same one for the deferred

renderer for Rungholt, for which the screenshot is shown in Figure 10c, using

Figure 9 as a reference highlights that there is not much difference between the

two renderers when the amount of overshading is low, with the two techniques

performing almost the same amount of reads and writes. However in samples

such as number 5 for Rungholt the difference in memory bandwidth between the

two renderers is much larger, with the visibility buffer outperforming the deferred

renderer. Sample 5 also reveals how the visibility buffer does around 60% less

memory reads than the deferred renderer, but that at the same time it performs as

many memory writes as deferred rendering. This is because the visibility buffer

suffers from overshading during the first subpass as much as the deferred renderer

does, but that does not affect its memory reads performance, since the memory

reads for visibility buffer rendering are all done in the second subpass.

Figure 9 also shows how the reads for the visibility buffer never exceed a cer-

tain threshold. This behaviour is described also in previous sections, and hence

this result further strengthens the observation that although the visibility buffer

renderer performs more memory reads during the second subpass than deferred

rendering, since these reads are performed in screen-space they do not affect the

final performance as much as the reads done by the deferred renderer in the first

subpass do. Hence the visibility buffer has an advantage over deferred rendering

for the implementations chosen for this paper since its reads are not coupled with

the amount of geometry processed during the first subppas, i.e. they are decoupled

from overshading.

In summary the graphs outline how the visibility buffer is less susceptible to
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overshading for memory reads than deferred rendering. The amount of memory

read is constant on average if the coverage of the final render consists of mostly

geometry and not sky. This contrasts with the deferred renderer which, performing

the albedo map reads during the first subpass, is more susceptible to overshading

in terms of memory reads: the more overshading there is, the more the memory

bandwidth for reads and writes increases. This information shows that although

the performance in terms of memory bandwidth varies depending on the position

of the camera and what is being contained within the view frustum (i.e. more or

less geometry), the visibility buffer performs at worst very similarly to the de-

ferred renderer and on average better than the deferred renderer, further strength-

ening the conclusion that the claims made in previous work regarding the benefits

of the visibility buffer due to its small footprint compared to deferred rendering.

5.2 DESIGN IMPLICATIONS

The implementation of the visibility buffer developed for this paper makes use of

additional buffers and additional texture channels for storing the extra information

represented by the barycentric coordinates and the texture coordinates gradients.

Hence it could be argued that the results are incorrect, however this is taken into

account when discussing the results. In fact, even when the additional buffers are

taken into account to calculate the averages and single samples, the results are still

in line with the main hypothesis.

Using the additional information to implement the visibility buffer is not necessary

if the implementation proposed by Burns and Hunt (2013) is developed; however

since it was possible to simply discard, when necessary, the additional data deriv-

ing from using additional buffers from the calculations, the visibility buffer was

implemented as outlined in Section 3.1.1.

Moreover a similar critique could be made of the implementation of a deferred

renderer: the size of the G-buffer per-fragment could be reduced by employing

different channel formats or by using other encoding formats for the information

that the G-Buffer stores, e.g. the normals could be encoded in polar format (Zink,

Pettineo and Hoxley 2011). However when combined with the larger size of the

visibility buffer highlighted above the results can be considered correct as they

both present an increase in size.
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Since neither renderer implementation makes use of a depth pre-pass, they

both suffer from overshading during the first subpass, even with the early-z op-

timisation enabled.

5.3 VISIBILITY BUFFER ARTEFACTS

Figure 11 – Screenshot showing how the final render of the visibility buffer renderer

artefacts appears at run-time. The artefacts are mainly located at the intersection of

two different materials in screen space due to the nature of their origin, as explained in

Section 5.3.

Due to a limitation in Vulkan, the visibility renderer presents artefacts in the

final rendered image. This limitation stems from the inability of different threads

within a pixel shader wavefront to each fetch a different texture (Tovey 2017).

However these artefacts do not affect the memory bandwidth measurements

and hence, although a workaround is available but not implementable (Tovey

2017), they are present in the final implementation. These artefacts can be no-

ticed either by running the visibility buffer renderer or by looking at the screen-

shots provided in the appendix. Figure 11 shows what the artefacts look like at

run-time. In Rungholt the artefacts are not present because that 3D model uses a

single texture for all the materials.
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6 CONCLUSIONS

The memory bandwidth of a visibility buffer renderer has been compared to the

one of a deferred renderer, within the constraints and rules defined by the chosen

implementation.

The results show that, for the test case of a visibility buffer and a deferred ren-

derer without depth pre-pass, the visibility buffer technique uses less memory

bandwidth than a deferred renderer, on average. In the best case scenario, e.g.

situations with low overshading, the implementation of the visibility buffer per-

forms similarly to a deferred renderer, but in situations with high overshading the

visibility buffer has a lower memory bandwidth usage due to it performing the

albedo map reads during the second subpass instead of during the first subpass,

which in practice decouple the albedo textures reads from the overshading and

makes them constant in screen-space.

This confirms that the statements regarding the advantages in terms of memory

bandwidth of the visibility buffer over deferred rendering made in previous works

on the visibility buffer are valid for the implementation chosen and also for an im-

plementation similar to the one used in the previous works. These works proved

that the visibility buffer can offer improvements in memory footprint over de-

ferred rendering without losing frame rendering time performance. However they

did not present precise measurements for the improvements of the memory band-

width usage of the visibility buffer, although such improvement was claimed. This

investigation hence complements the previous work on the subject by providing

such missing memory bandwidth usage data, by defining with more certainty the

improvements which are available by using a visibility buffer renderer over de-

ferred rendering and helping to clarify what the best use cases are for the visibility

buffer and how it compares to deferred rendering.

Hence the answer to main research question:

How does the visibility buffer technique compare to deferred rendering

in terms of memory bandwidth usage?

is that the visibility buffer rendering technique performs better in terms of memory

bandwidth than deferred rendering on average and for the implementations chosen.

Furthermore, it has been estimated and shown that under the conditions given by a

visibility buffer implementation with a smaller visibility buffer the results would
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be even more in favour of the visibility buffer, at the expense of an increased

computational cost in the second subpass.

Future work and suggestions The implementation of the visibility buffer could

be changed to the one proposed by Burns and Hunt (2013) or the one by Schied

and Dachsbacher (2015) and the tests could be repeated under the conditions in-

troduced by these different visibility buffer designs. The visibility buffer renderer

would have a smaller memory footprint, thus producing a smaller memory band-

width usage. However this would result in more time spent in the second subpass

due the implementation having to calculate the barycentric coordinates. With the

implementation proposed by Schied and Dachsbacher (2015) this performance

implication would be alleviated at the expense of memory footprint.

The deferred renderer implementation could be changed to use a G-buffer with

a smaller memory footprint, i.e. different data encodings, different buffer formats,

etc. Various solutions to achieve this are proposed by Zink, Pettineo and Hox-

ley (2011), e.g. encoding the normals of the normal buffer into two channels by

means of polar coordinates, or avoiding the use of three RGB channels to store the

specular albedo in favour of a grayscale specular albedo which would thus occupy

a single channel. This would result in a smaller memory footprint for the deferred

renderer and consequentially in a smaller memory bandwidth usage.

Both renderers could be integrated with a form of geometry culling, so that

less geometry is sent to the GPU for processing per-frame, akin to what done

by Engel (2016) using a library similar to GeometryFX (Chajdas 2016b). Having

less geometry to process during the first subpass would mainly advantage the de-

ferred renderer since it is the renderer which suffers the most from overshading,

resulting in a smaller memory bandwidth usage for it. However there would be a

similar drop in memory bandwidth usage for the visibility buffer, hence the results

would not be extremely different from what discussed in this paper.

The test scenes could be varied further to test the implementation under more

conditions. Bigger or smaller scenes could be used, which would mainly affect

the overshading which affects both renderers. There would therefore be a variance

in the results similarly to what shown in this research with samples taken with

different geometry complexity within the view frustum.
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The memory bandwidth measurement tests could be run on mobile to assess

this performance aspect on the such embedded GPU architectures which generally

present tiled rendering architectures, and desktop GPUs from other vendors, e.g.

NVidia, could be tested as well.

Other types of renderer could be developed and compared against the visibility

buffer renderer, e.g. Forward +, Forward and Light pre-pass. Such renderers,

making use of a depth pre-pass, would integrate well in a test with a visibility

buffer implementation making use of a depth pre-pass such as the one by Schied

and Dachsbacher (2015). The deferred renderer would especially benefit from

the depth pre-pass which would make it avoid overshading in the subpass used to

construct the G-buffer. This would result in a lower memory bandwidth usage.

However, the visibility buffer would benefit in terms of less overshading for the

same reasons.
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A AMD GCN EXTENSIONS WORKAROUND

47



...

layout (location = 0) flat in uint draw_id;

layout (location = 1) in vec2 uv_in;

layout (location = 2) flat in vec4 pos0;

layout (location = 3) __explicitInterpAMD in vec4 pos1;

...

vec4 v0 = interpolateAtVertexAMD(pos1, 0);

vec4 v1 = interpolateAtVertexAMD(pos1, 1);

vec4 v2 = interpolateAtVertexAMD(pos1, 2);

if (v0 == pos0) {

debug_out.y = gl_BaryCoordSmoothAMD.x;

debug_out.z = gl_BaryCoordSmoothAMD.y;

debug_out.x = 1 - debug_out.z - debug_out.y;

}

else if (v1 == pos0) {

debug_out.x = gl_BaryCoordSmoothAMD.x;

debug_out.y = gl_BaryCoordSmoothAMD.y;

debug_out.z = 1 - debug_out.x - debug_out.y;

} else if (v2 == pos0) {

debug_out.z = gl_BaryCoordSmoothAMD.x;

debug_out.x = gl_BaryCoordSmoothAMD.y;

debug_out.y = 1 - debug_out.x - debug_out.z;

}

...

Listing 6 – Workaround to have the barycentric coordinates work correctly and appear

at the vertex as expected. If the barycentric coordinates were used directly without

manipulation, the invoking vertex would change depending on the view-space position

of the vertices of the triangle. It makes use of the AMD GCN extensions for Vulkan and

DX12.

B INSTRUMENTATION EXAMPLE
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...

%OpName %__1 ""

%OpDecorate %normals_map DescriptorSet 0

%OpDecorate %normals_map Binding 15

%OpDecorate %normals_map InputAttachmentIndex 4

...

%64 = OpImageRead %v4float %61 %63

OpStore %normal_specpower %64

...

Listing 7 – Non-instrumented.

...

%OpName %__1 ""

%OpDecorate %normals_map DescriptorSet 0

%OpDecorate %_arr_uint_1_uint_1_2 ArrayStride 4

%OpDecorate %_arr_uint_1_uint_1_2_0 ArrayStride 4

%OpDecorate %258 Binding 12

%OpDecorate %258 DescriptorSet 0

%OpMemberDecorate %_struct_270 1 Offset 8

%OpDecorate %_struct_270 BufferBlock

%OpMemberDecorate %_struct_270 0 Offset 0

%OpDecorate %normals_map Binding 15

%OpDecorate %normals_map InputAttachmentIndex 4

...

%64 = OpImageRead %v4float %61 %63

%276 = OpAccessChain %_ptr_Uniform_uint_1 %258 %int_4_0 %int_4_1

%275 = OpAtomicIAdd %uint_1 %276 %uint_1_1 %uint_1_0 %uint_1_1

OpStore %normal_specpower %64

...

Listing 8 – Instrumented.

Figure 12 – Listings 7 and 8 present sample SPIR-V code showing the comparison

between a non-instrumented fragment module and one after instrumentation respect-

ively. The module is created from compilation of the GLSL shader g shade.frag, the

fragment shader for the second subpass of the deferred renderer, which is then instru-

mented. Listing 7 is a line-by-line diff of Listing 8, where the highlighted lines represent

the injected code.
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C SCREENSHOTS RELATIVE TO SAMPLES

The subsequent figures present the screenshots for various test cases, e.g. Sponza

with deferred rendering at 1280×720. For each test case 10 samples were taken,

hence each figure presents 10 screenshots. In each figure, starting from the top

left, the samples are ordered left-to-right, e.g. the screenshot relative to sample 3

is on in the first column of the second row of a given figure. Since the captures

were all taken at the same locations per scene, not all resolutions are represented

in these figures: only one resolution is used per scene since the screenshots for

other resolutions would be identical with the differences only in a smaller pixel

count. This amount of screenshots is enough to understand the conditions under

which the memory bandwidth measurements were performed.

Figure 13 – Screenshots for samples from deferred rendering at 1920×1080 in Rung-

holt.
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Figure 14 – Screenshots for samples from deferred rendering at 1920×1080 in Sponza.
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Figure 15 – Screenshots for samples from visibility buffer rendering at 1920×1080 in

Rungholt.
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Figure 16 – Screenshots for samples from visibility buffer rendering at 1920×1080 in

Sponza.
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