
Parallelisation of a 

Raytracing algorithm
Alberto Taiuti

1300250

AG0803 – Architectures and Performance



Purpose of the application

Render a 3D scene using a raytracing

algorithm

Make use of GPGPU to improve the 

performance and reduce the rendering time

Explore the world of GPGPU computing



Application Design

 A base class represents a raytracer

 Child classes are instantiated to represent different categories of 

raytracer

 CPU

 GPU

 The main contains a pointer to the base class and by polymorphism 

instantiates the correct class depending on the user input

 Guarantees readability and consistent timing and buffers setup 

methods



Application Design

 Once the raytracer is created and the scene setup, the 
raytracer is initialised

 The raytracing algorithm is implemented by the child classes 
and is run in the main by the raytrace method

 Each child class can implement the raytracing algorithm as 
necessary

 CPU runs is sequentially

 GPU sets up an launches a kernel



Threads synchronisation

 Demonstrated within a kernel

 Makes use of barriers when copying from global 

memory to local memory

 Ensures better performance

 Exploits the OpenCL memory hierarchy



Signaling

 Demonstrated in the GPU raytracer

 The memory buffers are copied in memory and 

release event objects

 The kernel is enqueued only when the two events 

produced by the buffers have been completed and 

de-queued



Performance results

0

500

1000

1500

2000

2500

Antialias 1 Antialias 2 Antialias 3

i7-3610QM Ivy Bridge – NVidia GeForce GTX 670M

CPU GPU GPU - Lines



Result



Conclusion

 It was extremely interesting to explore the 

world of GPGPU

Very rewarding to learn the raytracing

algorithm

The results obtained confirm initial 

hypothesis of performance improvement 

due to parallelism and specifically, GPGPU


