
Parallelisation of a 

Raytracing algorithm
Alberto Taiuti

1300250

AG0803 – Architectures and Performance



Purpose of the application

Render a 3D scene using a raytracing

algorithm

Make use of GPGPU to improve the 

performance and reduce the rendering time

Explore the world of GPGPU computing



Application Design

 A base class represents a raytracer

 Child classes are instantiated to represent different categories of 

raytracer

 CPU

 GPU

 The main contains a pointer to the base class and by polymorphism 

instantiates the correct class depending on the user input

 Guarantees readability and consistent timing and buffers setup 

methods



Application Design

 Once the raytracer is created and the scene setup, the 
raytracer is initialised

 The raytracing algorithm is implemented by the child classes 
and is run in the main by the raytrace method

 Each child class can implement the raytracing algorithm as 
necessary

 CPU runs is sequentially

 GPU sets up an launches a kernel



Threads synchronisation

 Demonstrated within a kernel

 Makes use of barriers when copying from global 

memory to local memory

 Ensures better performance

 Exploits the OpenCL memory hierarchy



Signaling

 Demonstrated in the GPU raytracer

 The memory buffers are copied in memory and 

release event objects

 The kernel is enqueued only when the two events 

produced by the buffers have been completed and 

de-queued



Performance results

0

500

1000

1500

2000

2500

Antialias 1 Antialias 2 Antialias 3

i7-3610QM Ivy Bridge – NVidia GeForce GTX 670M

CPU GPU GPU - Lines



Result



Conclusion

 It was extremely interesting to explore the 

world of GPGPU

Very rewarding to learn the raytracing

algorithm

The results obtained confirm initial 

hypothesis of performance improvement 

due to parallelism and specifically, GPGPU


